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In this paper we consider the problem of characterizing those situations under
which the best uniform linear approximation to an arbitrary continuous function
is unique. The problem has been solved by Haar where the set of approximants is
a finite dimensional subspace, but in this paper we generalize this by allowing the
set of approximants to be any subset of a finite dimensional space. Some previous
work has been done on this problem by Rice [2, p. 87 ff.] for a number of partial
results.

I.

We consider a compact metric space X and the space C(X) of real valued
continuous functions on X. For g E C(X) we define II g II = max",ex Ig(x)l.
Functions in C(X) are to be approximated by linear combinations of n given
linearly independent continuous functions ft(X),f2(X), ... ,fn(x). A linear
combination of the fi(x) is represented by a' F(x) where a ERn, and
F(x) = [.h(x), ... ,fn(x)]. Thus, a . F(x) is the usual dot product. Also if a ERn,
I a I denotes (a . a)lj2.

Let B(g, K) = [a ERn: II a . F - g II ~ K], denote the ball of center g and
radius K intersected with the linear subspace of fi(x), and let P be a subset
of Rn.

DEFINITION 1.1. A set G C P is called a set of good approximations
relative to P if there exists g E C(X) and K ~ 0 such that G = P () B(g, K).
Further if g and K are such that K = infaep II a . F - g II, then G is said to be
a set of best approximations relative to P.

We wish to emphasize that when we simply use the term "good (best)
approximations," we mean relative to Rn (i.e., good (best) from the entire
linear subspace F generated by the ordered basis ft{x), ...,fn(x)).
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DEFINITION 1.2. We say that P possesses the unicity property (with
respect to F) if each set of best approximations relative to P consists of a
single point.

In this paper we characterize those sets P which do not possess this
property. The two situations in which P may fail to possess the unicity
property are represented in Fig. I and 2.

FIGURE 1

s

p
FIGURE 2

In Fig. I a set of best approximations, S, intersects P in more than one
point. In Fig. 2 an n dimensional set of good approximations, S, intersects P
in two or more points all of which lie on the boundary of S. Our character
ization is based upon a characterization of these sets of best and good
approximations. It is geometric in nature and shows that in general the set
of directions attained by the vector F(x) = [f;,(X),f2(X), ... ,fnCx)] plays an
important role in determining whether or not P has the unicity property.

As an application we give an example to show that P may have the unicity
property even though its complement contains a convex set whose boundary
touches P in more than one point. This example is of interest in light of a
conjecture in [2, p. 90].

II

As in [I] we let (B.A.)g denote B(g, No*(g)), the set of best approximations
to g. Thus, No *(g) (c for Chebychev) equals infaeRn II a . F - gil.

THEOREM 2.1. A necessary and sufficient condition that P not possess the
unicity property is that dther (i) there exists a set of best approximations
containing more than one point of P or (ii) there exists a set of good approxi
mations, with nonempty interior, which is such that P intersects its boundary
in at least two points while not intersecting its interior.

Proof Sufficiency: If S is a set of best approximations containing more
than one point of P, then P () S is a set of best approximations relative to P,
and, hence, P does not have the unicity property.
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Let S = B(g, K) be a set of good approximations with the properties (ii).
If b E P and II b . F - gil < K, b would have to be on the boundary of S.
But then there would exist a¢: S such that II a . F - g II < K. Since this is
impossible, lib' F - g II ~ K. It follows that S (\ P is a set of best approxi
mations relative to P, and, thus, P does not have the unicity property.

Necessity: Let G C P be a set of best approximations relative to P
consisting of more than one point. For some g, G = P (\ B(g, K) where
K = infaEP II a . F - g II. Let S = B(g, K). If S is not a set of best approxi
mations then K > N e*(g) and, hence, the interior of Sis nonempty. Further,
if b were contained in S (\ P and yet not on the boundary of S, we could
choose dE (RA.)g C S and a on the boundary of S such that b = M + ua,
A > 0, u ~ 0 and A+ u = 1. We would then have

II b . F - g II ~ AII d . F - gil + u II a . F - gil = ANe*(g) + uK < K.

But, since this is not possible, S (\ P is contained in the boundary of S.
To obtain a more useful characterization we must characterize the sets of

good and of best approximations. In the "best" case this has been done in [1],
and for the "good" case the analogous results are now developed.

If S is a compact convex set in Rn we let

Nem(s) = sup[t(max a . F(x) - min a . F(x))].
X
- aES aES"'E

In [1] it is shown that if S is a set of best approximations,

Nem(s) = min[Ne*(g): (RA.)g = S].
g

The set of points at which this extreme value is attained is

[x EX: !(max a . F(x) - min a . F(x» = Nem(S)].
aES aeS

We denote this set by EFCs). Note that Nem(s) and EF(S) are invariant under
translation of S.

LEMMA 2.2. IfS = B(g, K), then K ~ Nem(s).

Proof The proof is the same as that of Lemma 1.4 in [1] except that
N e*(g) is replaced by K.

LEMMA 2.3. If S = B(g, K) there is a function gm E qX) such that
S = B(gm , Nem).

Proof In the proof of Theorem 1.6 of [1] we may replace N e*(g) by K
and omit the last paragraph and establish this result.
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LEMMA 2.4. S = B(g, K) if and only ifS + a = B(g + a . F, K).

Proof See [1] Lemma 2.1.

At this point the reader should be aware of what we mean by "enfold."
A precise definition appears in [1]. Roughly, however, a set of real n dimen
sional vectors T enfolds a smooth compact n dimensional convex set S C Rn
containing the origin, if when the vectors in T are normalized to length 1
(call this set the normalization of T), there is for each tangent plane to S an
inward unit normal contained in the closure of the normalization of T. When
S is not smooth support hyperplanes replace the tangent planes. Further, if
the convex set is not n dimensional T enfolds S if both the above criterion is
satisfied by the projections of the vectors T on L(S), the smallest linear
subspace containing S, and, additionally, there is a sufficient supply ofvectors
orthogonal to L(S) which are contained in the closure of the normalization
of T.

Let S be a compact convex set in Rn with 0 as an interior point relative
to L(S), and let K ?: Nem(s). We have the following theorem.

THEOREM 2.5. A necessary and sufficient condition for the existence of
g E C(X) such that S = B(g, K) is that there exist two closed subsets Ql'
Q2 C X with the following properties:

(i) Ql n Q2 = 0

Ql n Q2 = EF(S)

(ii) F(Ql) U (-F(Q2»

if K > Nem(s),
if K = Nem(s).

enfolds S.

Proof Sufficiency: The proof, with one exception, is the same as the
proof of the sufficiency portion of Theorem 3.1 in [1]. Because we do not
assume there exists an XoE Ql U Q2 such that F(xo) E L(S}l, our construction
ofg(x) does not allow us to say, that for all a E S, II a . F - gil = K.

Necessity: The proof is completed the same way as the necessity
portion of Theorem 3.1 in [1], except that we do not assume K = N e*(g),
and we omit the paragraph containing the reference to Lemma 3.2.

To avoid the assumption that 0 is an interior point of S relative to L(S),
we use the following convention: If S is a compact convex set in Rn, choose
a E S so that 0 is an interior point of S - a relative to L(S - a), and then
say that T enfolds S if T enfolds S - a. Also, we define the dimension of S,
dim S, to be the dimension of L(S - a).

It is easy to show that if Ql and Q2 are closed, dim S < nand
F(Ql) U (-F(Q2» enfolds S, then there exists an Xo E Ql U Q2 such that
F(xo) E L(S).l.. Now Lemma 2.3, which has its analog in [1], implies that S
is a set of good approximations if and only if for some g E C(X) we have
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S = G(g, Ncm(S»). We see from Theorem 2.5, Lemma 2.4, and the corre
sponding results in [1], that for any compact convex set S the following two
theorems are valid.

THEOREM 2.6. A necessary and sufficient condition for S to be a set of
good approximations is that there exist two closed sets Ql , Q2 C X with the
following properties:

(i) Ql II Q2 = EF(S).

(ii) F(Ql) u (-F(Q2)) enfolds S.

THEOREM 2.7. A necessary and sufficient condition for S to be a set of best
approximations is that there exist two closed sets Ql , Q2 C X with the following
properties:

(i) Ql II Q2 = EF(S).

(ii) F(Ql) u (-F(Q2)) enfolds S.

(iii) If dim S = n then F(x) vanishes at some point of Ql U Q2 .

Our characterization is now an immediate consequence of Theorems 2.1,
2.6, and 2.7.

THEOREM 2.8. A necessary and sufficient condition that P not possess the
unicity property is that there exist (a) a compact convex set S C Rn which
contains at least two points of P, and (b) two closed subsets Ql , Q2 C X such
that the following conditions hold:

(i) Ql II Q2 = EFCS).

(ii) F(Ql) U (-F(Q2)) enfolds S.

(iii) If dim S = nand P intersects the interior of S, then F(x) vanishes
at some point of Ql U Q2 .

If {hex)} form a Chebychev set then each set of best approximations consists
of a single point. Thus, from Theorems 2.1 and 2.6 we have Theorem 2.9.

THEOREM 2.9. If{h(x)}form a Chebychev set then a necessary andsufficient
condition that P not possess the unicity property is that there exist (a) an n
dimensional compact convex set S C Rn whose boundary intersects P in at least
two points and whose interior lies in the complement of P and (b) two closed
subsets Ql , Q2 C X such that the following conditions hold:

(i) Ql II Q2 = EFCS).

(ii) F(Ql) U (-F(Q2)) enfolds S.

To illustrate this theorem we consider the following example.
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EXAMPLE 2.9. Let n = 2, X = [0, tl and F(x) = [1, xl. a = (al , a2) and
P = [a: a2 ~ [ al [l.

Let S be a two dimensional compact convex set whose boundary touches
the boundary of P in at least the two points band d, and whose interior
does not intersect P.

The boundary of P is made up of two line segments so that if b, d lie on the
same one of these segments the boundary of S must contain a subsegment
of this segment. But since F(X) does not contain a vector perpendicular to
this segment it is not possible to find Ql , Q2 C X such that F(Ql) U ( - F(Q2))
enfolds S.

If b, d lie on different segments, let b* be on the a2 axis on or below the
segment connecting band d and on the boundary of S.

A support hyperplane to S through b* is a line through b* which divides R2
into two half planes in such a way that band d are not in opposite half planes.
But since such a line would have to have a slope between -1 and 1 it is again
not possible (since F(X) contains no vector perpendicular to such a line) to find
Ql' Q2 C X such that F(Ql) U (-F(Q2)) enfolds S. We conclude, by
Theorem 2.9, that P possesses the unicity property.

REFERENCES

1. P. LINDSTROM, Necessary and sufficient conditions for a compact convex set to be a
set of best approximations, J. Approximation Theory, 3 (1970), 183-193.

2. J. RICE, "Approximation of Functions," Vol. I, Addison-Wesley, Reading, MA, 1964.


